Canonical Hankel wavelet transformation and Calderón’s reproducing formula

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calderón's reproducing formula for Hankel convolution

where φ :Rn → C and φt(x)= t−nφ(x/t), t > 0. For conditions of validity of identity (1.1), we may refer to [3]. Hankel convolution introduced by Hirschman Jr. [5] related to the Hankel transform was studied at length by Cholewinski [1] and Haimo [4]. Its distributional theory was developed byMarrero and Betancor [6]. Pathak and Pandey [8] used Hankel convolution in their study of pseudodifferen...

متن کامل

Wavelet Transformation

Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation.   Introduction: The...

متن کامل

Signal recovery and wavelet reproducing kernels

| A class of signal recovery problems can be formulated as nding missing data at the nest scale of a discrete wavelet transform. A unique and stable recovery can be obtained by solving the regularized wavelet reproducing equation. We show that this approach has close relations to unconstrained and constrained least-squares techniques and derive a family of regularizing operators adapted to the ...

متن کامل

A Canonical Bundle Formula

A higher dimensional analogue of Kodaira's canonical bundle formula is obtained. As applications, we prove that the logcanonical ring of a klt pair with 3 is nitely generated, and that there exists an e ectively computable natural numberM such that jMK X j induces the Iitaka bering for every algebraic threefold X with Kodaira dimension = 1.

متن کامل

A Generalized Debye Scattering Formula and the Hankel Transform

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2018

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1808735p